cloud_regions_metadata
24 rows where year = 2019
This data as json, CSV (advanced)
Suggested facets: provider-cfe-hourly
Link | rowid ▼ | year | cloud-provider | cloud-region | cfe-region | em-zone-id | wt-region-id | location | geolocation | provider-cfe-hourly | provider-cfe-annual | power-usage-effectiveness | water-usage-effectiveness | provider-carbon-intensity-market-annual | provider-carbon-intensity-average-consumption-hourly | grid-carbon-intensity-average-consumption-annual | grid-carbon-intensity-marginal-consumption-annual | grid-carbon-intensity-average-production-annual | grid-carbon-intensity | total-ICT-energy-consumption-annual | total-water-input | renewable-energy-consumption | renewable-energy-consumption-goe | renewable-energy-consumption-ppa | renewable-energy-consumption-onsite | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
287 | 287 | 2019 | Google Cloud | asia-east1 | Taiwan | TW | TW | Taiwan | 0.19 | 0 | 541 | |||||||||||||||
288 | 288 | 2019 | Google Cloud | asia-east2 | Hong Kong | HK | HK | Hong Kong | 0.0 | 0 | 506 | |||||||||||||||
289 | 289 | 2019 | Google Cloud | asia-northeast1 | Tokyo | JP-TK | JP_TK | Tokyo | 0.0 | 0 | 569 | |||||||||||||||
290 | 290 | 2019 | Google Cloud | asia-northeast2 | Kansai | JP-KN | JP_KN | Osaka | 0.0 | 0 | 414 | |||||||||||||||
291 | 291 | 2019 | Google Cloud | asia-northeast3 | South Korea | KR | KOR | Seoul | 0.0 | 0 | 490 | |||||||||||||||
292 | 292 | 2019 | Google Cloud | asia-south1 | Maharashtra | IN-MH | IND | Mumbai | 0.0 | 0 | 752 | |||||||||||||||
293 | 293 | 2019 | Google Cloud | asia-southeast1 | Singapore | SG | SGP | Singapore | 0.03 | 0 | 493 | |||||||||||||||
294 | 294 | 2019 | Google Cloud | asia-southeast2 | Indonesia | ID | ID | Jakarta | 0.0 | 0 | 647 | |||||||||||||||
295 | 295 | 2019 | Google Cloud | australia-southeast1 | New South Wales | AUS-NSW | NEM_NSW | Sydney | 0.11 | 0 | 725 | |||||||||||||||
296 | 296 | 2019 | Google Cloud | europe-north1 | Victoria | AUS-VIC | NEM_VIC | Finland | 0.77 | 0 | 181 | |||||||||||||||
297 | 297 | 2019 | Google Cloud | europe-west1 | Belgium | BE | BE | Belgium | 0.68 | 0 | 196 | |||||||||||||||
298 | 298 | 2019 | Google Cloud | europe-west2 | Great Britain | GB | UK | London | 0.54 | 0 | 257 | |||||||||||||||
299 | 299 | 2019 | Google Cloud | europe-west3 | Germany | DE | DE | Frankfurt | 0.61 | 0 | 319 | |||||||||||||||
300 | 300 | 2019 | Google Cloud | europe-west4 | Netherlands | NL | NL | Netherlands | 0.61 | 0 | 474 | |||||||||||||||
301 | 301 | 2019 | Google Cloud | europe-west6 | Switzerland | CH | CH | Zurich | 0.0 | 0 | 87 | |||||||||||||||
302 | 302 | 2019 | Google Cloud | northamerica-northeast1 | Quebec | CA-QC | HQ | Montreal | 0.0 | 0 | 27 | |||||||||||||||
303 | 303 | 2019 | Google Cloud | southamerica-east1 | Central Brazil | BR-CS | BRA | Sao Paulo | 0.87 | 0 | 109 | |||||||||||||||
304 | 304 | 2019 | Google Cloud | us-central1 | MISO | US-MIDW-MISO | MISO_MASON_CITY | Iowa | 0.78 | 0 | 479 | |||||||||||||||
305 | 305 | 2019 | Google Cloud | us-east1 | SC | US-CAR-SC | SC | South Carolina | 0.19 | 0 | 500 | |||||||||||||||
306 | 306 | 2019 | Google Cloud | us-east4 | PJM | US-MIDA-PJM | PJM_DC | Northern Virginia | 0.41 | 0 | 383 | |||||||||||||||
307 | 307 | 2019 | Google Cloud | us-west1 | BPA | US-NW-BPAT | BPA | Oregon | 0.89 | 0 | 117 | |||||||||||||||
308 | 308 | 2019 | Google Cloud | us-west2 | CAISO | US-CAL-CISO | LDWP | Los Angeles | 0.55 | 0 | 248 | |||||||||||||||
309 | 309 | 2019 | Google Cloud | us-west3 | PACE | US-NW-PACE | PACE | Salt Lake City | 0.25 | 0 | 561 | |||||||||||||||
310 | 310 | 2019 | Google Cloud | us-west4 | NVE | US-NW-NEVP | NEVP | Las Vegas | 0.13 | 0 | 491 |
Advanced export
JSON shape: default, array, newline-delimited
CREATE TABLE "cloud_regions_metadata" ( [year] INTEGER, [cloud-provider] TEXT, [cloud-region] TEXT, [cfe-region] TEXT, [em-zone-id] TEXT, [wt-region-id] TEXT, [location] TEXT, [geolocation] TEXT, [provider-cfe-hourly] FLOAT, [provider-cfe-annual] FLOAT, [power-usage-effectiveness] FLOAT, [water-usage-effectiveness] FLOAT, [provider-carbon-intensity-market-annual] INTEGER, [provider-carbon-intensity-average-consumption-hourly] INTEGER, [grid-carbon-intensity-average-consumption-annual] INTEGER, [grid-carbon-intensity-marginal-consumption-annual] FLOAT, [grid-carbon-intensity-average-production-annual] INTEGER, [grid-carbon-intensity] INTEGER, [total-ICT-energy-consumption-annual] INTEGER, [total-water-input] INTEGER, [renewable-energy-consumption] INTEGER, [renewable-energy-consumption-goe] INTEGER, [renewable-energy-consumption-ppa] INTEGER, [] INTEGER, [renewable-energy-consumption-onsite] INTEGER );